ความรู้พื้นฐานตู้จำลองสภาพแวดล้อม สำหรับงานทดสอบผลิตภัณฑ์อุตสาหกรรม และ

การบำรุงรักษาเชิงป้องกัน

Fundamental of Simulation Environmental Chamber for Industries Material Testing And Preventive Maintenance

> ประยูร แสงงาม พิชิตพล วนภูติ 17 กรกฎาคม 2556

> > 2

What does environmental testing mean ? การทดสอบ จำลองสภาพแวดล้อมหมายถึงอะไร **?**

* การทดลองเกี่ยวกับสิ่งมีชีวิต Biology science ส่วนใหญ่เป็นการจำลองสภาพแวดล้อมให้

เหมาะสมในการทดสอบหรือเจริญเติบโต

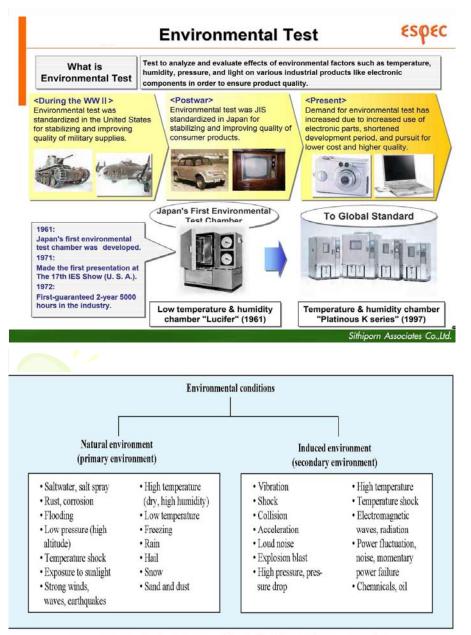
- + Plant Growth chamber
 - + Tissue Culture chamber
 - + Seed Germinator
 - + Incubator >>> CO2 Incubator

* การทดลอง-ทดสอบด้านวัสดุศาสตร์

Material science

ส่วนใหญ่เป็นการจำลองสภาพแวดล้อมให้ 1 ส เวชอ ส่ ร ส์

ไม่เหมาะสมหรือเร่งให้เกิดความเสื่อมเร็วขึ้น


- + Stabilty testing chamber
 - + Salt Spray testing chamber
- + Thermal Shock testing chamber
- + Other chamber

<mark>ทำไม</mark>ต้องทดสอบ **?**

บ้จจุบันผลิตภัณฑ์ต่างๆ เช่น เครื่องไฟฟ้าในครัวเรือน อุปกรณ์− สำนักงาน และสิ่งอำนวยความสะดวกต่างๆ เช่น คอมพิวเตอร์ โทรศัพท์มือถือ กล้องถ่ายรูป MP4 ฯลฯ มีการพัฒนา ให้มีขนาด เล็กลง และมี function ต่างๆ ในการทำงานมากขึ้น ตลอดจนผลิตภัณฑ์ด้านอื่นๆเช่น ยา อาหาร เคมีภัณฑ์อื่นๆ มีโอกาสนำพา ใช้ในสถานที่ต่างๆทั่วโลก ทั้งในสภาพแวดล้อมที่เหมาะสมและไม่เหมาะสม

ดังนั้นการทดสอบจำลองสภาพแวดล้อม เป็นกระบวนการหนึ่ง ที่มีความสำคัญ เพื่อทดสอบหาความบกพร่อง ความทนทาน ของสินค้า นำสู่การพัฒนา ปรับปรุงคุณภาพสินค้า ให้ได้ตาม มาตรฐานผลิตภัณฑ์ตลอดจนความปลอดภัยในการใช้งาน นำสู่ความพึ่งพอใจให้กับผู้บริโภค

Factors of environmental conditions in Combined Environmental Testing

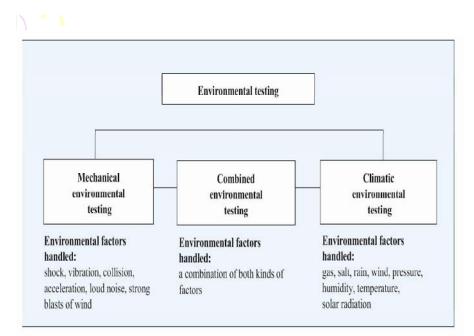


Fig 1 Types of environmental testing

สภาพแวดล้อม	ผลกระทบต่อผลิตภัณฑ์
2. ความชื้น	ความชื้นสามารถแทรกซึมเข้าไปในช่องว่างของสาร และวัสดุต่าง ๆ อันเป็นสาเหตุให้เกิด oxidation ของสารประกอบต่าง ๆ ซึ่งเป็นส่วนประกอบของ ชิ้นงานหรือวัสดุ เช่น วัสดุที่เป็นยางหรือปะเก็นใน เครื่อง เกิดการบวม เสื่อมสภาพได้ หรือในกรณี
	ความชื้นต่ำมาก ๆ อาจทำให้วัสดุเกิดเปราะแตก ได้ง่าย

ตารางที่ 1 ปัจจัยสภาพแวคล้อมทางภูมิอากาศ ที่มีผลต่อผลิตภัณฑ์

υ

	📏 สภาพแวดล้อม	ผลกระทบต่อผลิตภัณฑ์		
	9 0 0	สร้างความเสื่อมสภาพและทำลายโครงสร้าง		
	2. <mark>น้ำใน</mark>	โดยที่ชิ้นส่วนต่างๆ ในขณะที่ใช้งานหากมี		
	บรรยากาศ :	ความร้อนสะสมอยู่ เมื่อมีน้ำหรือฝนตกถูก		
		ชิ้นส่วนเหล่านี้ ทำให้มีการลดความร้อนอย่าง		
	at the way	รวดเร็ว ซึ่งจะเป็นตัวส่งเสริมให้เกิดการกัด		
		กร่อนของโครงสร้างเหล่านี้ ตลอดจน		
	Tent start	ก่อให้เกิดความบกพร่องทางไฟฟ้า และ		
	a. Copper migration	ทำลายพื้นผิวชิ้นงานได้ 4		

ตัวอย่างเกรื่องมือทดสอบด้าน Climatic Environmental

TEMPERATURE (& HUMIDITY) CHAMBER PLATINOUS J SERIES

(ตารางที่ 1, ต่อ)

สภาพแวดล้อม	ผลกระทบต่อผลิตภัณท์		
3. ทรายและฝุ่น	ฝุ่นและทรายทำให้เกิดการขัดสีของพื้นผิว ทำให้เพิ่มแรง ต้านของพื้นผิวชิ้นงาน การปนเปื้อนในน้ำมันหล่อลื่น การอุดตันของท่อ และก่อให้เกิดความฝืดของกลไก การแตกหักของวัสดุต่าง ๆ ได้		
4. ไอเกลือ หรือไอน้ำทะเล	เนื่องจากสารละลายเกลือต่างๆ สามารถนำไฟฟ้า ทำให้ ความเป็นฉนวนลดลง และยังเป็นตัวส่งเสริมให้เกิดการ กัดกร่อนของ electrolytic และทางเคมีแก่โลหะได้		
516	19		

Settling Dust Test Chambers

ESPEC dust chambers provide a ready-made solution to common settling dust test requirements for automotive components and electronics cabinets. Our improved W-shaped bottom provides bet-ter collection and dispersion of "Arizona fine dust" and taleum powders.

The chamber has a unique "clamshell" lid for easier front loading compared with competitive top-loading designs. Optional reach-in glove ports allow rotating the test sample without opening the door.

Features

- · Stainless steel interior and exterior
- Stantices steer interior and exterior
 W-shaped bottom for improved dust collection & dispersion
 Easy-access clamshell door with viewing window and op-tional glove ports
 Mesh product shelf

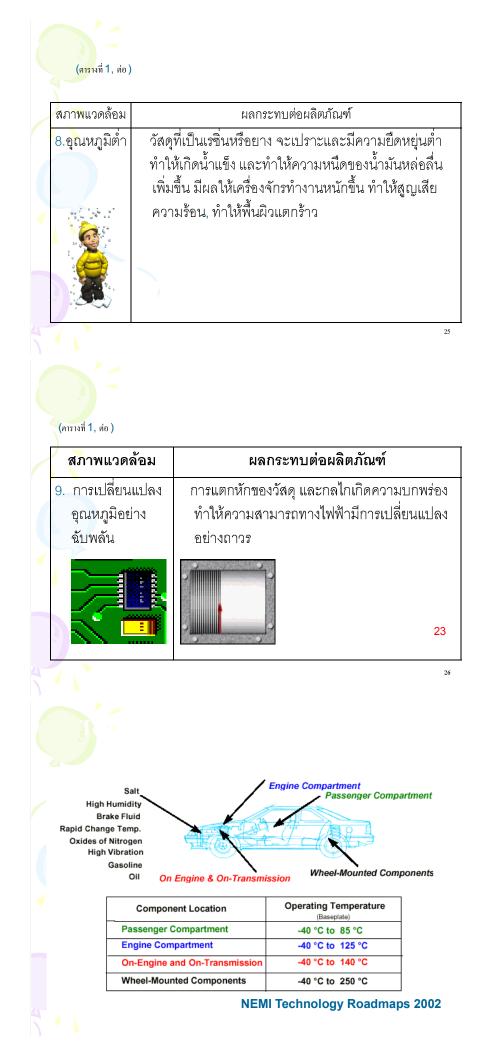
- Two inch cable port
 Timers for agitation and settling periods

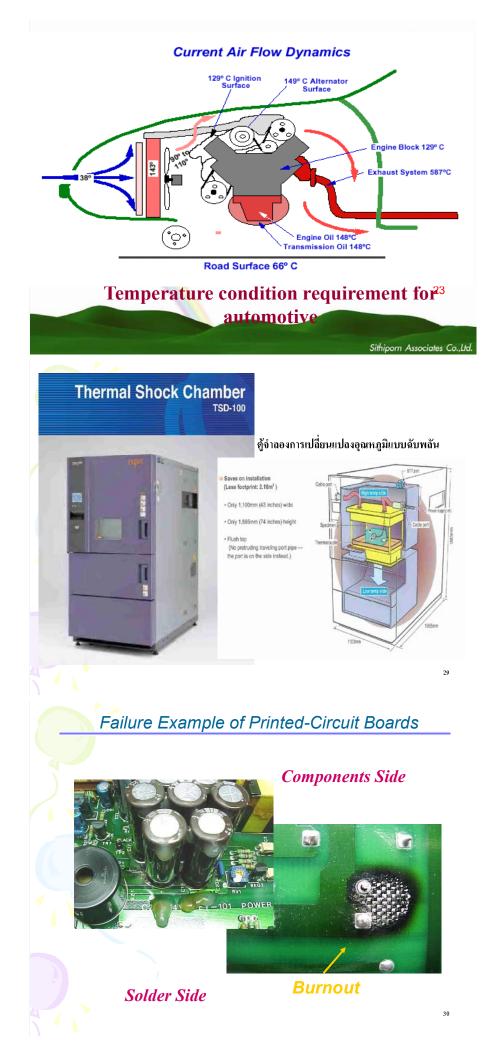
- Applicable Test Standards SAE J575 Section 3.3 DIN 40050, Part 9, IP Codes 5K and 6K IEC EN 60529 (IEC 529), IP Codes 5 and 6 (with optional under-pressure mode)

Model	Interior Volume	Interior Dimensions
EDC-27	27 cu, ft. (750 L)	36" x 36" x 30" (90 x 90 x 75 cm)
EDC-54	54 cu. ft. (1,500 L)	72" x 36" x 30" (180 x 90 x 75 cm)

ตู้ทคสอบจำลองภายใต้สภาพฝุ่น

Unique 'clamshell' door for easy access


Salt Spray Testing chamber



20

สภาพแวดล้อม	ผลกระทบต่อผลิตภัณฑ์
6. แสงแคด	ทำให้สีซีดจาง ในกรณีวัสดุที่เป็นยางหากถูกแสงแดด มาก ๆ ก่อให้เกิดความร้อน ส่งผลให้ยางสูญเสียความ ยืดหยุ่น
	,
ALK-IN TYPE	& HUMIDITY) CHAMBER E SERIES
:	Infrared Lamp
,)	
2	
(การางที่ 1. ค่อ)	
(ครางที่ 1, ค่อ) สภาพแวดล้อม	ผลกระทบต่อผลิตภัณฑ์

สภาพแวดล้อม	ผลกระทบต่อผลิตภัณฑ์	
10. ความดันสูง -ต่ำ โกรง	เป็นสาเหตุให้เกิดการแตกหัก การขยายตัว และ ทำลายโครงสร้างของอาคาร ภาชนะบรรจุภัณฑ์ และ ถังเก็บ ทำให้วัสดุปิดผนึกรั่ว ทำให้เกิดฟองอากาศ ภายในวัสดุ ทำให้การบิดงอ ชิ้นส่วนของอากาศยาน, จรวด Missiles หรือเครื่องบิน ทำให้เกิดความ ผิดพลาดของเครื่องมือวัดทางการบินต่างๆ ได้ เช่น เครื่องวัดความระดับสูง ตลอดจนความเปลี่ยนแปลง ลักษณะทางไฟฟ้าต่าง ๆ	

Altitude Chambers

Temperature testing at altitudes up to 100,000 feet.

ตู้ทดสอบจำลองสภาวะ ที่ระดับความสูงต่างๆ

ESPEC can provide custom-built chambers for simultaneous testing of temperature and low-pressure altitude conditions. Two common applications are:

- Testing of avionics or other aerospace equipment to simulate actual . conditions it might experience.
- Simulation of high-altitude conditions like might be found in mountainous regions.
- Temperature range from -70 to 170°C •
- Altitude range from ground to 100,000 feet •

 - Optional humidity control when altitude system is off Chamber interior size specified by customer Automatic altitude control, integrated with temperature controller —No manual setting of altitude level!
- Vacuum pump sized for climb/dive rate required by application : Viewing window and cable ports available

Sithiporn Associates

Co.Lto

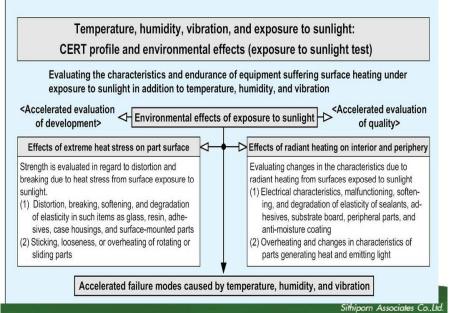
32

(ตารางที่ 1, ต่อ)

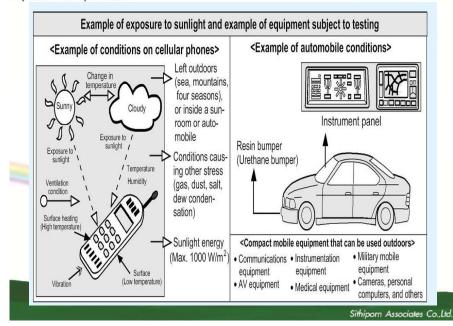
. .

สภาพแวดล้อม	ผลกระทบต่อผลิตภัณฑ์		
11. แก๊สต่าง ๆ	ส่งเสริมให้เกิดการกัดกร่อนของวัสดุโลหะ ความ เป็นฉนวนไฟฟ้าลดลง ทำให้คุณลักษณะของ thermoelectric transfer มีการเปลี่ยนแปลง และก่อให้เกิด oxidation		

Great Expectations for the Combined Environmental Reliability Test (CERT)


For high assembly level or finished products

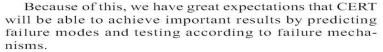
Hiromichi Fukumoto*

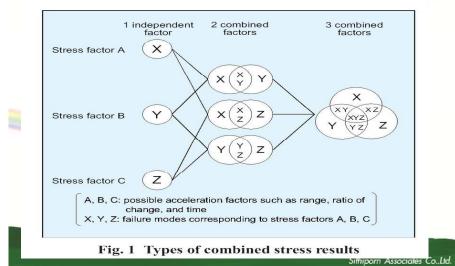

A large number of failures in the field are caused by conditions resulting from how the surrounding environment interacts with the internal characteristics of a product, creating the immense challenge of discovering this interaction as quickly and cheaply as possible. One means of doing so is the Combined Environmental Reliability Test (hereafter, CERT), based on combining accelerated factors. When using this test, both the environmental conditions for product use and product characteristics are considered in advance, and used to hypothesize the types of failure likely to occur. After first contemplating conditions unlikely to produce failure, a CERT profile is drawn up according to a reproducible mechanism for the test failure modes. In this report, I would like to present a brief explanation and introduction that can also serve as a guideline for inaugurating CERT. We shall take a close look at the correlation between failure modes and environmental stress factors and I shall discuss accelerated results, including new failure modes occurring under conditions of both combined and independent stress failure modes being used. We shall also consider application of stress failure modes to reliability testing under combined conditions that are as close as possible to the actual environment.

Sithiporn Associates Co...L

http://www.sithiphorn.com

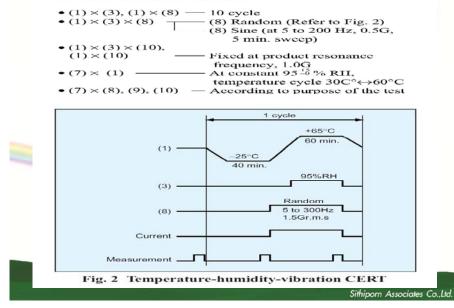
http://www.sithiphorn.com

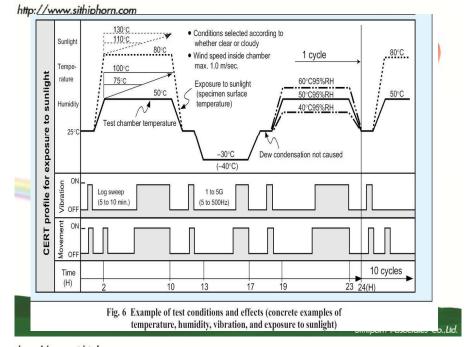



http://www.sithiphorn.com

2-1 CERT effectiveness

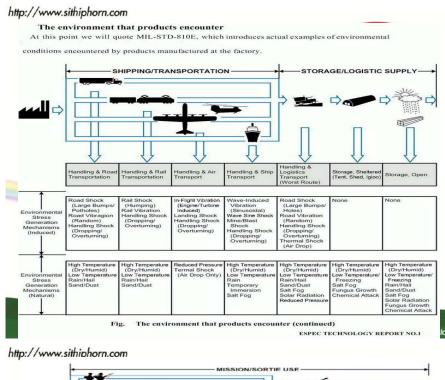
The intensity of Environmental Stress Testing (hereafter, EST) and Environmental Stress Screening (hereafter, ESS) depends on such factors as the range of stress, the ratio of change, and the number of factors and cycles. Even in independent stress testing, increasing the complexity can accelerate the test 3 to 5 times. In CERT testing, 2 or more environmental factors are combined with the aim of accelerating each factor 3 to 5 times, producing an overall acceleration of tens or hundreds of times. Combining stress factors not only accelerates the failure mode for each stress factor, it also raises the possibility of introducing completely new failure modes.


http://www.sithiphorn.com



http://www.sithiphorn.com

(2) CERT program example



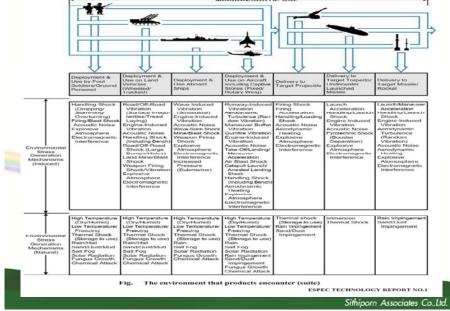

http://www.sithiphorn.com

Fig. 4 gives the TABAI ESPEC "Combined Environment Reliability Test Equipment: CERT Series" as a reference example of equipment.

· · 回

2.5 Standards for environmental testing

The <u>IEC standards and MIL standards</u> have been established as <u>representative standards</u> for environmental <u>testing</u>.

The International Electrotechnical Commission established the IEC standards for international standardization of the electrical and electronic fields. Publication 68 of the IEC standards consolidates "Basic environmental testing procedures". European countries form the core of the member nations of IEC, while the MIL (military) standards were originally established to standardize procurement of US military weapons and equipment.

Standard number	Test number and item			
68-1 (1988)	Part 1: General and guidance Enumerates a series of environmental tests and appropriate severities, and prescribes variou atmospheric conditions for measurements for the ability of specimens to perform under normal conditions of transportation, storage and operational use. Amendment No.1 (1992)			
68-2-1 (1990)	Part 2: Tests — Tests A: Cold Concerns cold tests on both non-heat-dissipating and heat-dissipating specimens.			
68-2-2 (1974)	Tests B: Dry heat Contains Test Ba: Dry heat for non-heat-dissipating specimen with sudden change of temperature; Test Bb: Dry heat for non-heat dissipating specimen with gradual change of temperature; Test Bc: Dry heat for heat-dissipating specimen with sudden change of temperature; Test Bd: Dry heat for heat-dissipating specimen with gradual change of temperature.			
68-2-3 (1969)	Test Ca: Damp heat, steady state Describes a continuous test at a steady temperature of 40°C and a relative humidity of 90- 95%.			
68-2-5 (1975) Test Sa: Simulated solar radiation at ground level				
68-2-9 (1975)	Guidance for solar radiation testing			
68-2-10 (1988)	Part 2: Test — Test J and guidance: Mould growth			
68-2-11 (1981) Test Ka: Salt mist				
	Test L: Sand and dust			
68-2-13 (1983)	Test M: Low air pressure			
68-2-14 (1984)	Test N: Change of temperature			
68-2-28 (1990)	Part 2: Tests — Guidance for damp heat tests			
68-2-30 (1980)	Test Db and guidance: damp heat, cyclic (12+12-hour cycle) Determines the suitability of components, equipment and other articles for use and/or storage under conditions of high humidity when combined with cyclic temperature chang			
68-2-33 (1971)	Guidance on change of temperature tests			
68-2-38 (1974)	Test Z/AD: Composite temperature/humidity cyclic test			
68-2-39 (1976)	Test Z/AMD: Combined sequential cold, low air pressure, and damp heat test			
68-2-40 (1976)	Test Z/AM: Combined cold/low air pressure tests			
68-2-41 (1976)	Test Z/BM: Combined dry heat/low air pressure tests			
68-2-42 (1982)	Test Kc: Sulphur dioxide test for contacts and connections			
68-2-43 (1976)	Test Kd: Hydrogen sulphide test for contacts and connections			
68-3-1 (1974)	Part3: Background information Section One — Cold and dry heat tests			
68-3-1A (1978)	First supplement			
68-3-2 (1976)	Section Two — Combined temperature/low air pressure tests			

MIL-STD-202 establishes testing standards for "electronic and electrical component parts". MIL-STD-750 sets testing standards for "semiconductor devices". MIL-STD-810 presents testing standards for "environmental test methods and engineering guidelines" ("procedure"), and MIL-STD-883 gives testing standards for "microelectronics". Today these standards do not merely apply to procurement of military equipment, but are widely used both in the US and throughout the world as basic standards for dealing with equipment. At this point, we would like to present the organization of the IEC and MIL testing standards that are so widely employed throughout the world.

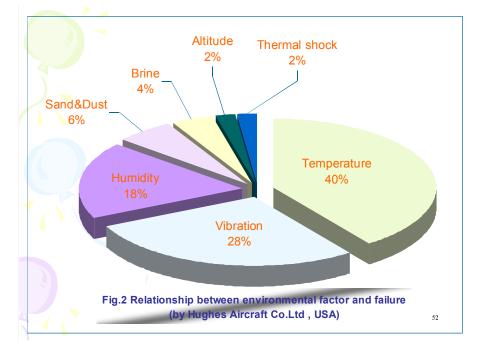
MIL-STD-202F			
Method No.	Title		
	Environmental tests (100 class)		
101D	Salt spray (corrosion)		
102A	Temperature cycling Cancel effective 31 Dec. 1973		
103B	Humidity (steady state)		
104A	Immersion		
105C	Barometric pressure (reduced)		
106F	Moisture resistance		
107G	07G Thermal shock		
108A	Life (at elevated ambient temperature)		
109B	Explosion		
110A	Sand and dust		
111A	Flammability (external flame)		
112E	Seal		

ตัวอย่างมาตรฐานทดสอบ MIL-Standard

MIL-STD-810E		
Method No.	Title	
500.3	Low pressure (altitude)	
501.3	High temperature	
502.3	Low temperature	
503.3	Temperature shock	
505.3	Solar radiation (sunshine)	
506.3	Rain	
507.3	Humidity	
508.4	Fungus	
509.3	Salt fog	
510.3	Sand and dust	
511.3	Explosive atmosphere	
512.3	Leakage (immersion)	
513.4	Acceleration	
514.4	Vibration	
515.4	Acoustic noise	
516.4	Shock	
519.4	Gunfire	
520.1	Temperature, humidity, vibration, altitude	
521.1	Icing/freezing rain	
523.1	Vibro-acoustic, temperature	

During world war II United States Military Report High failure of some military equipment When sent electronic equipment for aircraft from USA to

S/E Asia .


>60 % was unusable on arrival.

>After delivery 50% of spare electronic equipment stored in warehouse already failed after they were stored.

50

Effect of temperature&humudity.

Products such as eletronics products or other products.

Failure cause from **Physical distortion** & **Chemical** reaction.

Ex. Heat & Cold

Difference in amount of thermal expansion between material used

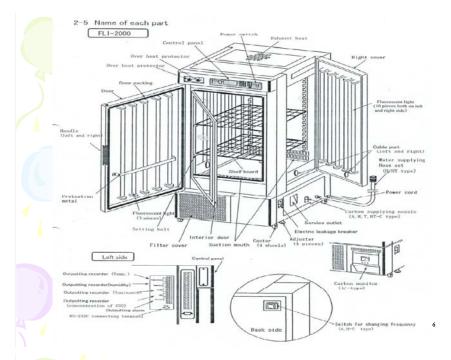
to construct the product. >>Cracks occurred.>>Then product failure

Moisture penetrate through these cracks.

If product case did not crack.>>> Moisture penetrate through surface of material

Then chemical reaction occurred,>>> Product failure**

แนวทางการทดสอบความคงสภาพของยา และผลิตภัณฑ์ยา


ผลิตภัณฑ์ยาทีมีคุณภาพ หมายถึงผลิตภัณฑ์ยาที่ได้มาตรฐานด้านคุณภาพ ความปลอดภัย และ มีประสิทธิภาพในการบำบัดรักษา ตั้งแต่แรกผลิตจนถึงมีอผู้ใช้ แต่การที่ผลิตภัณฑ์ยาต่างๆ ถูกเก็บรักษาใน <u>สภาวะที่ไม่เหมาะสม</u>และผ่านระบบการกระจายผลิตภัณฑ์ยา (Distribution chain) <u>ในสภาวะภูมิอากาศต่างๆ</u> สามารถ<u>ส่งผลให้เกิดการเสื่อมสลายทั้งทางฟิสิกส์และทางเคมี</u> ทำให้ประสิทธิภาพการรักษาลดลง และอาจ เกิดสารเสื่อมสลายที่เป็นพิษต่อร่างกาย ปัญหาความคงสภาพของผลิตภัณฑ์ยาจึงมีความสำคัญ และถูก กำหนดให้เป็นหน้าที่โดยตรงของผู้ผลิตยาในการดำเนินการศึกษาความคงสภาพตามหลักเกณฑ์และ วิธีการที่ดีในการผลิตยาแผนปัจจุบัน <u>ซึ่งกระทรวงสาธารณสุขโดยสำนักงานคณะกรรมการอาหารและยา</u> ได้ออกกฏกระทรวงกำหนดหลักเกณฑ์วิธีการและเงื่อนไขการผลิตยาแผนปัจจุบัน พ.ศ. 2546

ICH GUIDELINES STABILITY TESTING OF NEW DRUG SUBSTANCES AND DRUG PRODUCTS

		Storage Condition		Min.Time
Туре	Study	Temperature	Humidity	with. Time
	Long Term	25°C ±2°C or 30°C ±2°C	60%RH±5%RH 65%RH±5%RH	12 months
General Case	Intermediate	30°C ±2°C	65%RH±5%RH	6 months
	Accelerated	40°C ±2°C	75%RH±5%RH	6 months
	Long Term	5°C ±3°C	-	12 months
ntended for Storage in a Refrigerator	Accelerated	25°C ±2°C	60%RH±5%RH	6 months
Intended for Storage in a Freezer	Long Term	-20°C ±5°C	_	12 months
	Long Term	25°C ±2°C or	40%RH±5%RH	12 months
Aqueous-Based Products in		30°C ±2°C	35%RH±5%RH	na montina
Semi-Permeable containers	Intermediate	30°C ±2°C	65%RH±5%RH	6 months
	Accelerated	40°C ±2°C	Not more than 25%RH	6 months

Photo stability Testing I Light exposure providing an overall illumination of not less than 1,200,000 Lux hou and an integrated near-UVA energy of not less than 200 watt hours/m2

ICH- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. The purpose of stability testing is to provide evidence on how the quality of a drug substance or drug product varies with time under the influence of a variety of environmental factors such as temperature, humidity, and light and to establish a re-test period for the drug substance or a shelf life for the drug product and recommended storage conditions.

4.5 สภาวะการทดสอบในการยื่นขอขึ้นทะเบียนต่ำรับยาในขั้นแรกอย่างน้อยต้องมีผลการทดสอบ ทั้ง Long Term Testing และ Accelerated Testing ควบคู่กัน

ชนิดการทดสอบ	สภาวะการทดสอบ	ช่วงเวลาการทดสอบเพื่า การขึ้นทะเบียนตำรับยา
Long Term Testing	30°c ± 2°c/ 75% RH ± 5% RH หรือ	6 เดือน (ก)
	$25^{\circ}\mathrm{c}\pm2^{\circ}\mathrm{c}$ 60% RH \pm 5% RH	12 เดือน (1)
Accelerated Testing*	40 °c \pm 2 °c/ 75% RH \pm 5% RH	6 เดือน
	$45^{\circ}c \pm 2^{\circ}c$ / 75% RH \pm 5% RH	4 เดือน
	45-50 $^{\circ}$ c \pm 2 $^{\circ}$ c/ 75% RH \pm 5% RH	3 เดือน

หมายเหตุ: ประเภท ก. หมายถึง ยารูปแบบทั่วไป

ประเภท ข. หมายถึง ยาใหม่ หรือ ยารูปแบบพิเศษ

 * บางกรณีที่ยาประเภท ก.ไม่สามารถทดสอบสภาวะเร่ง เช่น ยาครีม แคปซูลชนิดนิ่ม ช่วงเวลา การทดสอบแบบระยะยาวต้องเพิ่มเป็น 12 เดือน

_แนวทางการทดสอบความคงสภาพของยา และพลิตภัณฑ์ยา

ข้อมูลสำคัญจากผลการทดสอบในสภาวะเร่งที่แสดงถึงความไม่คงสภาพของผลิตภัณฑ์ยา คือ

คุณภาพไม่เป็นไปตามข้อกำหนดของผู้ผลิต ได้แก่

- ปริมาณตัวยาสำคัญหรือ potency ลดลงมากกว่า 5% จากจุดเริ่มต้นการทดสอบ
- ปริมาณสารเสื่อมสลายเกินค่าที่กำหนดไว้
- ลักษณะทางฟิสิกส์อื่นๆไม่เป็นไปตามที่กำหนดเช่น ลักษณะภายนอก สี การแยกชั้น
 - resuspendability, delivery per actuation, caking, hardness
- ค่า pH เกินช่วงที่กำหนด
- การละลายของตัวยา 12 เม็ด/แคปซูล ไม่เป็นไปตามที่กำหนด

กรณีพบว่าผลิตภัณฑ์ยาไม่คงสภาพเมื่อทดสอบในสภาวะ 30°c ± 2°c / 75 % RH ± 5%RH ตามช่วงเวลาที่กำหนด ผู้ทดสอบอาจแก้ไขได้โดย (1) ลดอายุการใช้ (2) เปลี่ยนภาชนะบรรจุเป็นชนิดที่ ป้องกันความชื้นเพิ่มขึ้น (3) แจ้งข้อควรระวังในการเก็บยาในฉลาก ทั้งนี้ต้องพิจารณาจากข้อมูลการ ทดสอบเพิ่มเติม

<mark>ย</mark>าที่มีน้ำเป็นส่วนประกอบ

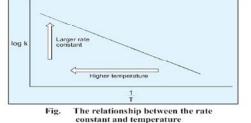
*ถ้าพบการสูญเสียน้ำเกิน 5 % จากจุดเริ่มต้นในการทดสอบที่ 40 c ± 2 c ความชื้น สำหรับผลิตภัณฑ์ที่บรรจุในภาชนะชนิด semi-permeable ถือว่าเป็นการ ไม่เกิน 25% RH นาน 3 เดือน เช่น 1 ml หรือน้อยกว่านั้นหรือ unit dose product ส่วนผลิตภัณฑ์ขนาดเล็ก ต้องแล้วแต่พิจารณา

การที่<u>อาหารที่เก็บมีการเปลี่ยนแปลงคุณภาพ</u>จนถึงจุดที่เรา ไม่ต้องการ (undersirable state) <u>เนื่องจาก</u>มีการ เปลี่ยนแปลงที่ทำให้อาหารเกิดการเสื่อมเสีย ซึ่งได้แก่

- 🔶 การเปลี่ยนแปลงทางกายภาพ
- การเปลี่ยนแปลงทางเคมี
- 🔶 การเปลี่ยนแปลงเนื่องจากจุลินทรีย์

รศ.ตร.รุ่งหมา พงศ์สวัสดิ์มานิต คณะอุตสาหกรรมเกษตร ม.เกษตรศาสตร์ September 14, 2005

10


Sithiporn Associates Co. Ltd

The role of temperature in reaction rate

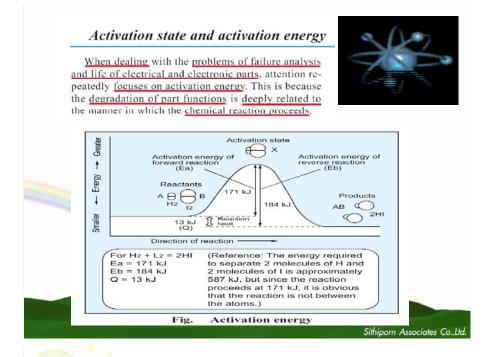
In 1889, the Swedish Physicist "S.T. Arrhenius discovered the Linear relationship between the rate constant (K) and temperature (T)

loa K ∞ 1/T

T = Absolute temperature = 273+ t °C In general, the higher temperature the faster reaction. If temperature rises 10 °C the rate constant becomes 2 to 3 times greater, so expressions as the 10 °C rule are used.

Temperature-related accelerated testing

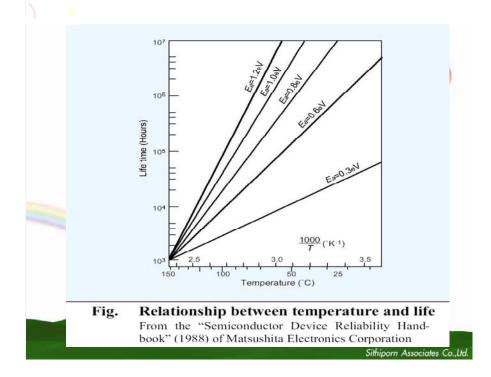
When discussing the life of manufactured goods generally, the expression " θ °C rule" can be used. This expression can be used as in the "10°C rule" to mean that a 10°C rise in the ambient temperature cuts life in half, a 20°C rise in ambient temperature cuts life in one quarter, etc. This rule indicates how strongly temperature influences life (failure).

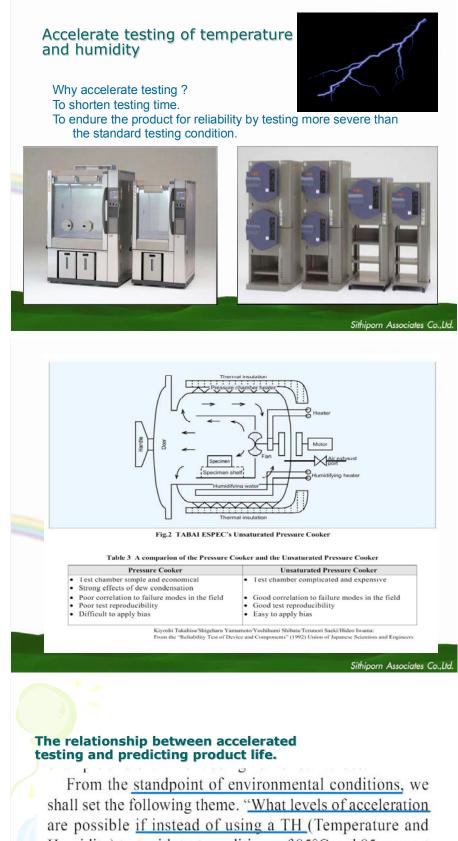

The <u>Arrhenius model is widely used for acceleration</u> of <u>temperature-related stress</u>. In the Arrhenius model, <u>life and the inverse number of absolute temperature</u> are always shown as straight lines on the semilog graph.

For acceleration factor K,

$$K = \frac{L_1}{L_2} = \frac{\exp\left(\frac{Ea}{RTo}\right)}{\exp\left(\frac{Ea}{RTa}\right)} = \exp\left\{\frac{Ea}{R}\left(\frac{1}{To} - \frac{1}{Ta}\right)\right\}$$

K: Constant Ea: Activation energy (eV) R: Boltzmann's constant 8.6159×10^{-5} (eV/°K) T: Absolute temperature (°K) = 273.15 + Celsius temperature t°C t: Celsius temperature (°C) To: Criteria temperature (°K) Ta: Test temperature (°K) L1: Life (h) at test temperature Ta (°K) L2: Life (h) at criteria temperature To (°K) Given that Ta > To.





Device name	Failure type	Failure mechanism	Activation energy (eV)	
IC	Disconnection	Compound forms between the metals Au-Al	1.0	
IC	Disconnection	Electromigration of Al	0.6	
IC (plastic)	Disconnection	Al corrosion	0.56	
MOS IC (memory)	Short circuit	Destruction of oxide film	0.3 - 0.35	
Diode	Short circuit	Destruction of PN junction (solid phase reaction of Au-Si)	1.5	
Transistor	Short circuit	Electromigration of Au	0.6	
MOS device	Variation in threshold voltage	Polarization of phosphorescent glass	1.0	
MOS device	Variation in threshold voltage	Na ion drift in Si oxide film	1.2 - 1.4	
MOS device	Variation in threshold voltage	Slow trapping of Si-Si oxide film surface	1.0	

Table 5 Semiconductor device failure mechanism and activation energy

From the "Mitsubishi Semiconductor Reliability Handbook" (1985) of Mitsubishi Electric Corporation

are possible <u>if instead of using a TH</u> (Temperature and Humidity) test with <u>test conditions of 85°C and 85 percent</u> RH, we <u>substitute a HAST</u> (Highly Accelerated Temperature and Humidity Stress Test) with test conditions of 120 to 140°C and 85 percent RH? Also, using those results, to what level of reliability can we predict product life in the field?"

$$Ac = \frac{L_2}{L_1} = \exp\left[\frac{E}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

If we say that $R = 8.615 \times 10^{-5}$ (eV/K), the above formula becomes the following.

E/R = E/8.615x 10⁻⁵ = E x 10⁵ /8.615 = 1.16 x10⁴ x E

$$Ac = \exp\left\{1.16 \times 10^{4} \times E \times \left(\frac{1}{273 + T_{85}} - \frac{1}{273 + T_{HAST}}\right)\right\}$$
(3.11)

71

Acceleration factors for TH tests in HAST Table

E (eV)	0.6	0.8	1.0	1.2	1.5
HAST	110°C	3.56	5.43	8.29	12.7	23.9
	120°C	5.65	10.1	17.9	31.9	75.8
	<u>130°C</u>	8.77	18.1	37.3	76.6	228
	140°C	13.3	31.6	74.8	177	647

Note: The values of *E*, the activation energy, are values obtained from typical failure modes of semiconductor devices, but please regard these numerical values as strictly hypothetical.

72

Next, from the results of HAST (130°C and 85 percent RH), let's try to predict the corresponding product life for a product submitted to the test, and let's say that the product will be used in Japan in a typical Japanese summer environment of 35°C and 85 percent RH. Let's take the lower limit for the value of E as 0.8 and the upper limit as 1.0.

Predicted life when E = 0.8

$$L_{E=0.8} = \exp\left\{1.16 \times 10^{4} \times 0.8 \times \left(\frac{1}{273 + 35} - \frac{1}{273 + 130}\right)\right\}$$

=1268.512 \longrightarrow approximately 1200 times
Predicted life when $E = 1.0$
$$L_{E=1.0} = \exp\left\{1.16 \times 10^{4} \times 1.0 \times \left(\frac{1}{273 + 35} - \frac{1}{273 + 130}\right)\right\}$$

=7570.39 \longrightarrow approximately 7500 times

Therefore, if we perform a 48-hour test using the above test conditions, and we say that failure did not occur, the product life in the field would be:

For E = 0.8: $48 \times 1200 = 57,600$ hours = 6.5 equivalent years

For E = 1.0: $48 \times 7500 = 360,000$ hours = 41.0 equivalent years

There are three variables $(E, T_1, \text{ and } T_2)$ in formula (3.10), given earlier for finding the extremely simple acceleration factor. We have nothing to say at this point about T_1 and T_2 , but E is crucial. It is the value for activation energy, and as we saw in the previous example, even a slight change in this value can yield a prediction for product life that is about six times longer. Therefore, the actual value of E must be found at all costs from the experimental data itself.

Well, how should we go about finding the value of *E*?

Question

Preliminary testing of a certain product found that the MTTF (mean time to failure) was 310 hours at 150°C, 1000 hours at 125°C, and 4000 hours at 100°C. Let's hypothesize that the failure mechanism for this product does not change at temperatures between 75 and 150°C, and answer the following questions.

- (1) <u>Find the activation energy</u>, then find the MTTF at 75°C.
- (2) Indicate whether a test should be run to find how many hours MTTF will be at 125°C to prove that MTTF is 5000 hours at 75°C.

Answers (1)

1

a) First of all, arrange the preconditions as follows.

 $L_{150} = 310$ -hour life at $150^{\circ}C$

 $L_{125} = 1000$ -hour life at $125^{\circ}C$

 $L_{100} = 4000$ -hour life at $100^{\circ}C$

b) Next, using the second of the two formulas in (3.10), change the formula to find <u>E</u>.

$$n\frac{L_2}{L_1} = \left[\frac{E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

$$\rightarrow E = \frac{R(\ln L_{100} / L_{150})}{\left[\frac{1}{T_{100}} - \frac{1}{T_{150}}\right]}$$
(3.11)

If we substitute the actual values in formula (3.11), we get

$$E = \frac{8.615 \times 10^{-5} (\ln 4000 / 310)}{\frac{1}{273 + 100} - \frac{1}{273 + 150}}$$

= 0.68(eV) ... the activation energy

c) Since we have found the activation energy, let's see what sort of ratio exists between L_{100} ($T = 100^{\circ}$ C) and L_{75} (T = 75°C).

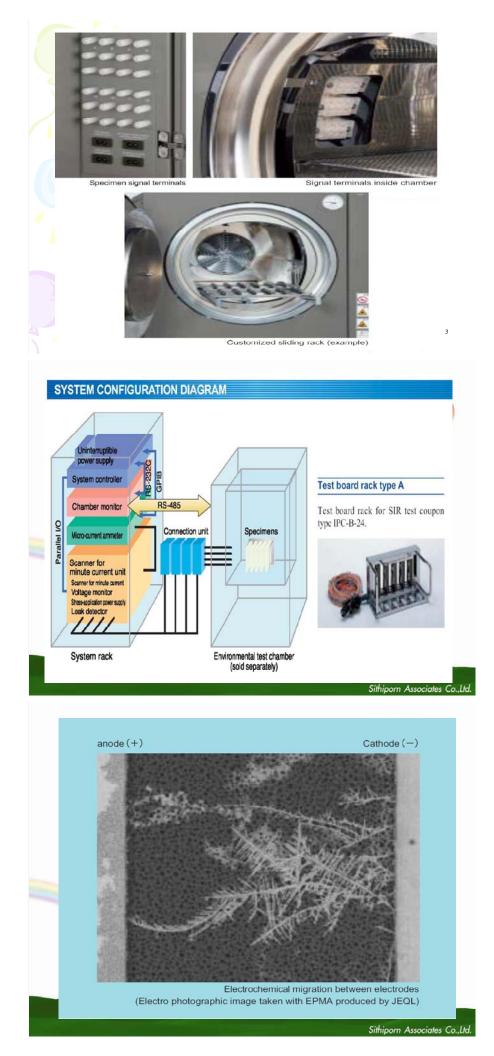
$$\ln \frac{L_{75}}{L_{100}} = \frac{0.68}{8.615 \times 10^{-5}} \left(\frac{1}{273 + 75} - \frac{1}{273 + 100} \right)$$
$$= 1.523$$

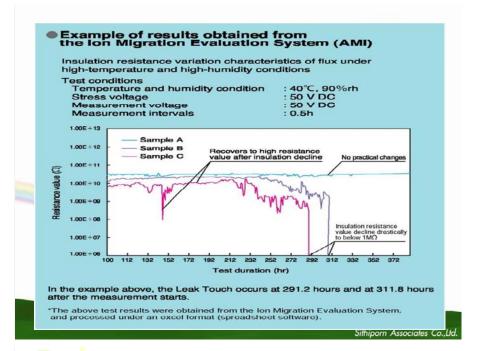
 $\therefore L_{75}/L_{100} = \exp 1.523 = 4.59 \text{ (the acceleration level between } L_{75} \text{ and } L_{100}\text{)}$

Since the MTTF is 4000 hours when $T = 100^{\circ}$ C, we can find the MTTF when $T = 75^{\circ}$ C by calculating 4000(hr) × 4.59 = 18,360(hr).

(2)

Using the <u>MTTF for $T = 75^{\circ}$ C</u> found above in part (1), find the acceleration factor between L₇₅ and L₁₂₅.


 $Ac = L_{75}/L_{125} = 18,360hr/1,000hr = 18.36$


Therefore, to prove that MTTF is 5000 hours at temperature conditions of 75° C, the conditions at 125° C would be 5000(hr)/18.36 = 272.33(hr). In other words, a test of approximately 272 hours would be required.

81

Example of the Highly accelerated stress test system with the Ion migration evaluation system

สามารถหาค่า Ea ได้จากเครื่องมือวิเคราะห์ Thermal Analysis เช่น -Differential Scanning Calorimeter (DSC)

วิเกราะห์หาปริมาณพลังงานกวามร้อน (Enthalpy) อุณหภูมิ Glass transition อุณหภูมิ / เวลา/เปอร์เซ็นต์การเดิดผลึก อุณหภูมิการหลอมเหลว อัตรา/ ระดับการเดิดโซ่เชื่อมโยงโมแอกุล (Rate / Degree of Cure) กวามร้อนอำเพาะ (Heat capacity)

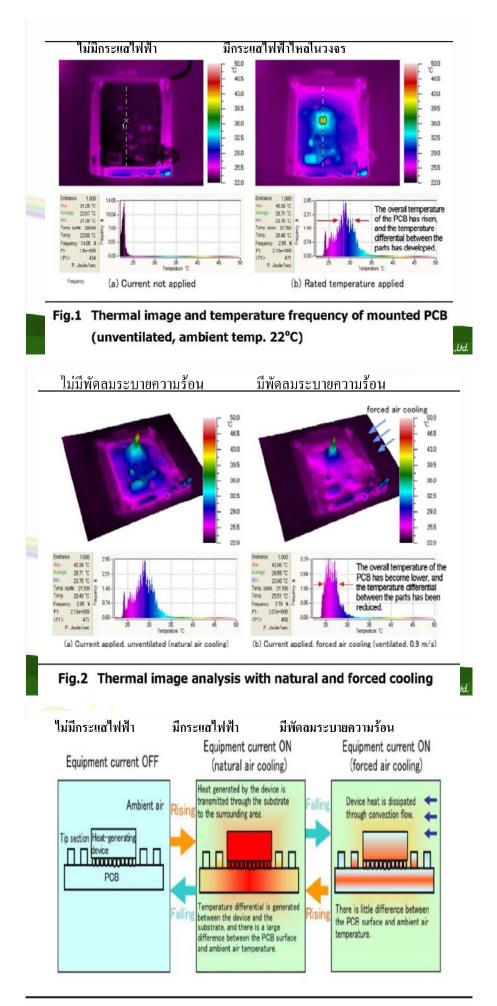
- สามารถโปรแกรมอุณหภูมิได้ตั้งแต่อุณหภูมิห้องถึง 725 C
- -90 ถึง 550 C เมื่อใช้งานร่วมกับระบบทำกวามเย้นเชิงกล
- -180 ถึง 550 C เมื่อใช้งานร่วมดับระบบในโตรเงนเหลว ของ

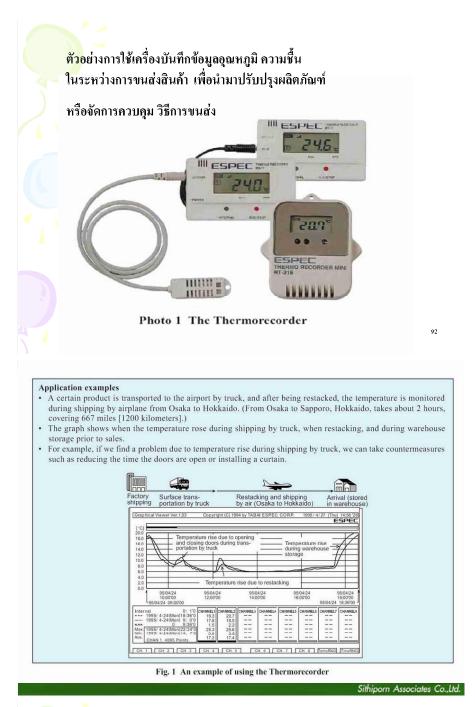
ข้อมู<mark>ล</mark>เพิ่มเติม ติดต่อแผนกงาย APD-S กูณบุญกรี- กูณศมนวรรณ

<mark>ตัวอย่าง</mark>การส[ึ]กษากวามร้อนที่เกิดใน PCBA เมื่อมีการใช้งานจริง

<mark>โดยใช้กล้องตรวจจับความร้อน____</mark>

Measuring PCB temperature


Thermal imaging measurements were performed using a thermal video system (TVS-500, from NEC Avio Infrared Technologies Co., Ltd.) that was set up on a tripod looking down on the PCB.


Thermal images were recorded at one-minute intervals from above.

Visible image of measurement PCB Table 1 Measurement conditions

Measurement substrate	Substrate: Glass epoxy su Size: 120 x 140 x 1.	
Measurement IC	32-bit RISC processor Power consumption (max.): Package:	0.5 W QFP208 pin
Measurement conditions - 1 (thermal image)	Detection element: Thermal image resolution: Measurement cycle:	two-dimensional uncooled microbolometer 320 x 240 pixels 1-min. intervals
Measurement conditions - 2 (temp. history)	(cop	mocouple type T per/copper-nickel) c. intervals

Fig.3 Concept diagram of temperature change from current and cooling

การศึกษาอุณหภูมิ ความชื้น ในร้านเบเกอรี ที่ญี่ปุ่น

Photo 2 Dew condensation on the glass showcase

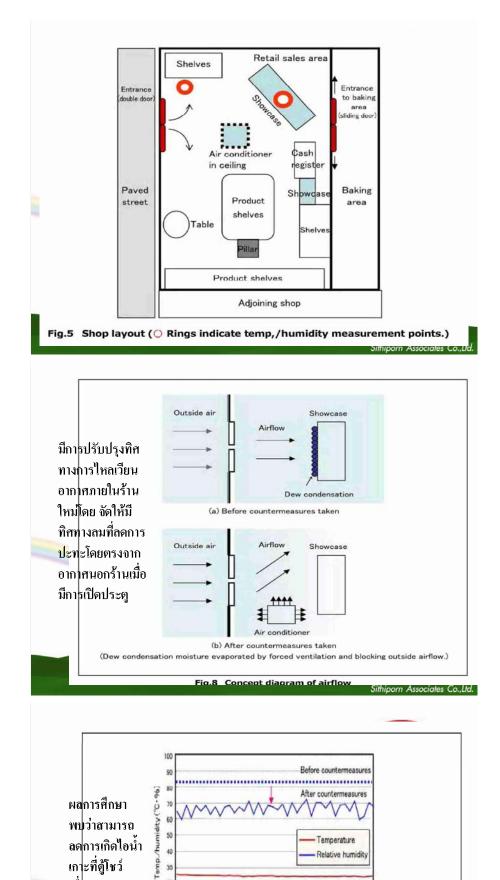


Fig.9 Changes in temperature and humidity following dew condensation countermeasures

Time (hour: minute)

15:45

16:30 17:15 18:00

12:45 13:30 14:15 15:00

เกาะที่ตู้โชว์

เนื่องจากความ

ความชื้นลงได้

10 -20%RH

30 20

10

n

12:00

Sithiporn Associates Co.,Ltd

Photo 3 Showcase after dew condensation countermeasures taken

การบำรุงรักษาเชิงป้องกัน

Preventive maintenance for Chamber / Oven

ขอบคุณครับ

ありがとこさいます。

Thank You Very Much :-))

Sithiporn Associates Co.,Ltd.